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The conformational states of the zwitterionic form of the pentapeptide Met-enkephalin were explored with
the use of explicit solvent molecular dynamics (MD). The N and C termini are ionized, as appropriate to
polar solvent conditions, and consequently, there is a competition between open forms driven by polar solvation
of the ammonium and carboxylate groups and closed forms driven by their salt-bridge formation. Normal
MD started from an open state does not sample closed conformations. Sampling was enhanced with a distance
replica exchange method (DREM) and with a Hamiltonian replica exchange method (HREM). The potential
of mean force (PMF) along an end-to-end distance reaction coordinate was obtained with the DREM. The
PMF shows a stable salt-bridge state and the presence of a large region of open states, as hypothesized for
conformationally promiscuous small opiate peptides. The HREM systems differ by scaling the peptide-
peptide and peptide-solvent electrostatic and Lennard-Jones potentials, with the goal of improving the sampling
efficiency with a limited number of systems. A small number of systems were found to be sufficient to
sample closed and open states. A principal component analysis (PCA) shows that the HREM-generated
fluctuations are dominated by the first two principal modes. The first corresponds to the end-to-end reaction
coordinate found in the DREM, and the first mode PMF is similar to the DREM PMF. The second mode
describes the presence of two conformations, both of which correspond to the salt-bridge state distance. The
conformers differ in the values of neighboring psi and phi dihedral angles, since such psi/phi compensation
can still produce the same end-to-end distance. The two-dimensional PMF constructed from the first two
PCA modes captures most of the significant backbone conformational space of Met-enkephalin.

1. Introduction

Protein molecular dynamics (MD) simulations with explicit
solvent run on the current practical time scale of nanoseconds
tend to stay around their initial configurations. Even for peptide
simulations in explicit solvent started from an extended state,
states that are more compact may not be properly sampled. This
generic sampling problem, in which barriers large compared
with the thermal energy separate stable states, is a major concern
in MD and Monte Carlo (MC) simulations. Methods such as
multicanonical ensemble,1,2 simulated tempering,3,4 and parallel
tempering, also referred to as the replica exchange method
(REM),5-11 were designed to address this issue. The original
versions of the REM used temperature (TREM), and recently,
a Hamiltonian REM (HREM) was introduced.12 These methods
contain two elements: (1) multiple copies of configurations are
run independently by MD or MC with different temperatures
(TREM) or Hamiltonians (HREM). (2) Two neighbors (different
temperatures or Hamiltonians) may be exchanged, according
to the Metropolis-Hastings algorithm.13 In the TREM, sampling
is improved at the desired (lowest) temperature by higher-
temperature replicas overcoming barriers in the potential energy
surface.14 TREM suffers from the deficiency that the number
of system copies needed scales with the square root of the
number of degrees of freedom of the system of interest.12

To address this difficulty with TREM, Fukunishi et al.12

introduced the HREM, in which the potential functions in
different Hamiltonians differ only in a limited set of the total

number of degrees of freedom required to characterize the
system, thereby, in principle, reducing the number of Hamil-
tonians needed. A specialization of the Hamiltonian REM that
is suited to studies in which a reaction coordinate can be
identified integrates the umbrella sampling method13 with the
HREM. Namely, different systems are created by adding
different umbrella window potential functions to the original
system, which serve to restrain the systems to sample desired
values along the reaction coordinate. This specialization of
HREM, which we will refer to as the distance REM (DREM),
was proposed by Sugita and co-workers in the context of a
multidimensional temperature and distance replica exchange
method and applied to the alanine trimer.15 We used the DREM
to investigate a large conformational change in adenylate kinase
that spans its open (ligand-free) and closed (ligand-bound)
structures.16 This DREM application provided greatly enhanced
sampling relative to standard umbrella sampling, as measured
by improvements in the speed of decay of time correlation
functions and the extent of conformational space exploration.16

In this work, the conformational space of Met-enkephalin,
an opioid pentapeptide with sequence Tyr-Gly-Gly-Phe-Met,
is explored with the use of explicit solvent MD simulations and
the HREM and DREM. Met-enkephalin has been shown to
exhibit great conformational plasticity by experiment17-22 and
computation2,7,23-31 and provides a good test of methods that
can enhance the rate of conformational sampling. Of particular
interest is the zwitterionic form (protonated N-terminus and
ionized C-terminus), which should predominate in polar media.
The competition between a salt-bridged closed form and charge-
solvated (terminal peptide charges interacting with solvent
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dipoles) open forms may lead to a reasonable proportion of
closed and open forms. A number of MD-based simulations of
Met-enkephalin and the closely related Leu-enkephalin have
been carried out. Van der Spoel and Berendsen25 discussed the
backbone and side-chain conformational space of Leu-enkepha-
lin and noted that the zwitterionic form is quite labile and
samples folded, closed forms. Aburi and Smith26 simulated Leu-
enkephalin as a function of pH and found that at neutral pH,
where they used the zwitterionic form, a roughly equal mixture
of folded and unfolded states exists. They found that starting
from an open form, the peptide rapidly closes but eventually
will reopen on their 10 ns time scale. Nielsen et al.27 simulated
Met- and Leu-enkephalin in zwitterionic forms, found a rapid
transition from extended to stable folded conformers, and
investigated the details of the side-chain conformations of the
folded forms. Shen and Freed28 compared the results of explicit
and implicit solvent simulations and found mostly compact with
some extended conformations. Zaman et al.29 carried out implicit
water Langevin dynamics simulations of Met-enkephalin with
a variety of force fields to compare their predictions for long
(∼130 ns) time scales. Karvounis et al.30 simulated zwitterionic
Leu-enkephalin in explicit solvent initiating a number of
trajectories from open forms and found a variety of behaviors,
including a persistent salt-bridge form. Sanbonmatsu and Garca31

simulated neutral Met-enkephalin in explicit solvent using the
TREM. This study demonstrated the enhanced sampling capa-
bility of a REM relative to conventional MD, showing that it
could surmount the barriers separating nonhelical from helical
conformations in the simulation interval.

The explicit solvent zwitterionic25-27 studies in which both
open and closed conformations were found show that the time
scale for these transitions is multinanosecond; thus, in typical
simulation times, only a few events can be observed. To obtain
a potential of mean force (PMF) and an equilibrium constant
between compact and extended conformers, either much longer
simulation times must be used or REM or other biasing
techniques need to be introduced. The DREM simulations we
carry out show that Met-enkephalin has a distinct salt-bridge
form that is separated by a low barrier from a broad range of
open forms, when the end-to-end distance is used as a PMF
reaction coordinate, with a roughly equal mixture of closed and
open form conformers. The HREM method supports this
conclusion and provides a more complete picture of the
conformational states sampled by Met-enkephalin by revealing
another significant reaction coordinate; namely, a correlated
compensating transition of succeeding psi and phi dihedrals that
permits the existence of two distinct conformers for the salt-
bridge form. The HREM is very effective in sampling the large
conformation space of Met-enkephalin at a reasonable compu-
tational cost.

In Section 2, the DREM and HREM are introduced, and
details of their applications to the simulation are provided. A
new approach to separating a PMF into its energetic and entropic
contributions is developed. Section 3 presents our results, and
conclusions are given in Section 4.

2. Methodology

Replica Exchange Methods.The temperature REM con-
structs independent copies of a system that differ by their
temperature. The REM concept can be generalized to a
Hamiltonian REM12 in which the systems differ by their
Hamiltonian (in practice, in their potential energy function). As
a matter of terminology, we shall refer to these different
Hamiltonians assystems(versus replicas), since replica connotes

a copy of an item. For HREM and DREM, it is more natural to
use this terminology. The term replicas will be reserved for the
configurations that are present on any particular MD step. In
CUKMODY, our MD program, a given configuration (replica)
is maintained on a particular compute node, and the systems
(with different potential functions) move onto and out of that
node.

It is worth formulating HREM and DREM separately due to
some technical issues in their implementations. For HREM,
Hi(X,P) ) T(P) + Vi(X) whereT(P) is the kinetic energy and
Vi(X) is the potential function for theith system with phase space
coordinatesX,P. Between exchange attempts, normal MD is
run for each systemi characterized byHi. When system
interchanges are to be attempted, detailed balance

must be enforced. Here,R(X,X′ f X′,X) is the acceptance
probability (transition probability) that configurationX in the
ith system andX′ in the jth system before exchange results in
configurationX′ in the ith system andX in the jth system after
exchange, andPi(X) is the Boltzmann distribution at temperature
T ) 1/kBâ for the ith system. The Metropolis rule for exchange
between two systems,

where

guarantees that Boltzmann equilibrium in the extended ensemble
of the product of all the systems’ ensembles will result for a
sufficiently long trajectory.12 If the potential functions differ
by a restricted set of degrees of freedom, only those will
contribute to eq 2.2b. In our HREM implementation, the
potential energy is parametrized as

where the terms in eq 2.3 denote peptide-peptide, peptide-
solvent, and solvent-solvent interactions, respectively, andλi

is a scaling factor for the Lennard-Jones and electrostatic
nonbonded interactions. In explicit solvent simulations, the
number of degrees of freedom is dominated by the solvent; thus,
the indicated scaling is much reduced relative to the TREM
where the global scalingâVi(X) ) âλiV(X) ≡ âiV(X) is used.

If the desire is to enhance the sampling at points along an
identified reaction coordinate, then systems that differ by a
window potential to maintain a desired distance can be
introduced to give a distance REM (DREM). A window
potentialWi(r ) (i ) 1, 2, ...,Nw) is added such thatHi(X,P) )
H(X,P) + Wi(r ), wherer ) f(X) denotes a reaction coordinate
dependent onX. For a one-dimensional distance reaction
coordinate,r, the ith window function is chosen as a harmonic
restraint Wi(r) ) (ki/2)(r - r0

i )2 with ki and r0
i the force

constant and equilibrium distance, respectively, and the ac-
ceptance probability is

with the last equality specialized to equal force constant values.

R(X,X′ f X′,X)Pi(X)Pj(X′) ) R(X′,X f X,X′)Pi(X′)Pj(X)

(2.1)

R(X,X′ f X′,X) ) min(1,e-∆(X,X′fX′,X)) (2.2a)

∆(X,X′ f X′,X) ) â[(Vi(X′) - Vj(X′)) + (Vj(X) - Vi(X))]

(2.2b)

Vi(X) ) λiVPP(xP,xP) + xλi VPS(xP,xS) + VSS(xS,xS) (2.3)

∆(X,X′ f X′,X) ) â[(Wi(r′) + Wj(r)) - (Wi(r) +

Wj(r′))] ) âk(r′ - r)(r0
j - r0

i ) (2.4)
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Between attempted exchanges, conventional MD simulations
are performed for the different systems. The exchanges may be
thought of either as configuration exchanges or temperature
(TREM) exchanges, window (DREM) exchanges, or scale-of-
interaction (HREM) exchanges. Computationally, it is efficient
that only temperature, window, or scale-of-interaction needs to
be exchanged, versus configuration. Exchanges are attempted
only between neighboring windows, because for the method to
be effective, the overlap between the windows’ probability
distributions needs to be adequate. In contrast with the TREM
(unless ensemble averages at higher temperatures than the
“normal” one are of interest) and HREM, in DREM, the
information from all the windows is used directly because it
will ultimately provide the potential of mean force along the
reaction coordinate. As in any window method, the DREM
biases the true Hamiltonian. To unbias the corresponding
probability distribution and to combine the trajectory data
obtained from the different windows, we use the weighted
histogram analysis method (WHAM).32,33For the HREM, PMFs
are obtained by simply constructing histograms of the relevant
coordinates from theλi ) 1 trajectory.

The potential of mean force PMF(r ), which is related to the
unbiased probability distributionpu(r ) according to PMF(r ) )
-kBT ln(pu(r )/pu(r ref)), with r ref some reference value, may be
viewed as anr -dependent free energy,∆A(r ), since it corre-
sponds to the reversible work of changingr from r ref to r . It is
of interest to decompose∆A(r ) into energetic and entropic
contributions according to∆A(r ) ) ∆E(r ) - T∆S(r ). However,
as has been discussed in various ways,34-39 this decomposition
introduces a statistical problem that is not present in the
evaluation of ∆A(r ). A straightforward way to expose the
difficulty is to consider the thermodynamic integration13 expres-
sions for some general free energy,∆A, and energy,∆E,
change,37

where the second equalities follow from writingH(λ) ) H0 +
λ(H1 - H0), and the brackets denote trajectory averages in the
λ ensemble. In eq 2.5a, when applied to the DREM type
Hamiltonian, only the difference of the window potentialsWi-
(r ) (i ) 0,1) contributes, and from a statistical perspective, the
fluctuations arising from these few degrees of freedom will be
small. In eq 2.5b, the required averages are of the total
Hamiltonian, which includes all the peptide and solvent degrees
of freedom, leading to large fluctuations that require long
trajectories. How this problem is manifest in the context of the
WHAM and how to accomplish the decomposition∆A(r ) )
∆E(r ) - T∆S(r ) is discussed in Appendix A. There, we show
that p(u)(E|r), the unbiased (by the window potentials) condi-
tional probability of total energy valuesE, given a value of the
reaction coordinater, is required to obtain∆E(r ). In this regard,
it is useful to think of the DREM perspective of a fixed system
(window potential) having its configuration updated in an
exchange move. The condition for bringing in a new configu-
ration is based on the window energy differences in eq 2.4.
The total energy,E(r ), fluctuates without the constraint of this
Metropolis rule. In addition to this REM source of fluctuation,
the usualE ∼ xN, whereN is the total number of degrees of
freedom source, is also present. Therefore, the quality of∆E(r )

and∆S(r ) will be considerably less for a given simulation length
than for∆A(r ).

Molecular Dynamics Simulations.The CUKMODY protein
molecular dynamics code, which uses the GROMOS9640 force
field, was modified to incorporate the HREM based on the
DREM16 code. The systems are run independently on different
nodes of a Linux cluster computer, and when exchanges are
attempted, information is passed using the message passing
interface technique implemented as MPICH. SHAKE41 is used
to constrain bond distances, enabling a 2 fs time step, and
temperature is globally controlled with a Berendsen thermostat42

with relaxation time of 0.2 ps.
For the evaluation of the electrostatic and the attractive part

of the Lennard-Jones energies and forces, the PME method43

was applied with a direct-space cutoff of 8.52 Å, an Ewald
coefficient of 0.32 for DREM and 0.45 for HREM, and a 30×
30 × 30 reciprocal space grid. Applying a scale factor to the
potential in the context of an Ewald method, in which the
evaluation of energy and force in the reciprocal space is based
on a structure factor (a sum over atoms), necessitates assignment
of the scale factor to atoms (versus atom-atom interactions).
For example, the scaling in eq 2.3 is based on assigningxλi (0
< λi e 1) to the protein atoms and not scaling the solvent atoms.
The electrostatic and Lennard-Jones interactions are uniformly
scaled; therefore, asλi decreases, softer Lennard-Jones and
reduced electrostatic interactions are obtained.

All simulations were carried out in a box with 30.0 Å sides,
having 864 waters initially. The starting Met-enkephalin con-
figuration was obtained from an NMR ensemble (pdb 1PLW).20

In this configuration, the end-to-end distance (nitrogen of the
N-terminus to carboxylate carbon of the C-terminus) is 10.5
Å; this distance in the ensemble of 80 lowest energy structures
is ∼10-11 Å. The peptide was immersed in the water box,
and 51 overlapping waters were removed. Before the DREM,
the systems were run for 1 ns with the force constantsk ) 4.0
kcal/mol and equilibrium distances 3.0-11.0 Å in 0.5 Å
increments, and 8.0-16.0 Å in 0.5 Å increments for the two
17-system simulations. Exchanges were attempted every 100
steps for the DREM. For an odd number, 2n + 1, of systems,
exchange attempts were alternated among 1o2, ..., 2n - 1o2n
and 2o3, ..., 2no2n + 1. The relatively small force constant used
permitted good overlap of windows for the 0.5 Å window
equilibrium distance increments and has the advantage of
enhancing the sampling of the orthogonal degrees of freedom.
For the HREM, five systems were used with the scale factors
set toλ1 ) 1, λ2 ) 0.925,λ3 ) 0.85,λ4 ) 0.775, andλ5 ) 0.7.
They are started from the same initial configuration, and the
first 3 ns are considered as the equilibration time. Exchanges
were attempted every 40 steps.

Principal Component Analysis.Principal component analy-
sis44-49 (PCA) diagonalizes the covariance matrix with elements
(σ)ij ) <δRiδRj> of the atom fluctuationsδRi ) Ri - <Ri>
from their trajectory-averaged<Ri(t)> ) ∫0

T Ri(t) dt/T values,
where theRi ) {xi, yi, zi} denotes the Cartesian components of
the position of theith atom. PCA decomposes the configuration
point X(t) ) (x1(t), y1(t), .., zN(t))T as

wheremi is the (orthonormal) eigenvectors of the covariance
matrix σ, the corresponding eigenvalues are denoted asλi

2, and
pi(t) is the mode displacements. The eigenvalues are related to
the mean square fluctuation (MSF) of the atoms over the

∆A ) ∫0

1 〈∂H(λ)
∂λ 〉

λ
dλ ) ∫0

1
〈H1 - H0〉λ dλ (2.5a)

∆E ) ∫0

1 ∂〈H(λ)〉λ

∂λ
dλ ) ∫0

1 ∂〈H0 + λ(H1 - H0)〉λ

∂λ
dλ

(2.5b)

X(t) ) ∑
i)1

3N

[X(t)‚mi]mi ) ∑
i)1

3N

pi(t)mi (2.6)
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trajectory as MSF) ∑i λi
2. In the rotated Cartesian coordinate

basis defined bymi (i ) 1, 2, ..., 3N), the largest eigenvalue
captures the largest fraction of the MSF; the second largest,
the next largest fraction of the MSF; etc. In favorable cases, a
small set of modes capture most of the fluctuation, and they
may describe collective motion. The PCA analysis can be used
as a severe test of simulation convergence because the larger
eigenvalues correspond to the slower motions of the peptide.
Several convergence tests have been proposed.50,51Amadei and
co-workers50 introduced a root-mean-square inner product
(RMSIP) measure,

that evaluates the overlap of a subset ofn modes obtained from
different time intervals of the total trajectory. Here, we taket
andt′ to be two disjoint time intervals of the trajectory and use
the resulting RMSIPs to monitor the stability of these modes.

The PCA is carried out by using ANALYZER,52 a program
written for the purpose of analyzing trajectory data by a wide
variety of methods.

Fluctuation Measures.The conventional RMSFj (root-mean-
square fluctuation for atomj) measure of protein fluctuations
(that can be compared to B-factors)53 is defined as

where rjj ) x∫0
Tdtr j(t)/T is the trajectory average position

vector for atomj.
A time-dependent version that is summed over all the atoms,

RMSF_t(s), can also be defined:

3. Results

DREM Simulations. Two DREM simulations of 6 ns each
were run to cover the end-to-end distance (Tyr1 terminal
nitrogen to Met5 terminal carboxylate carbon) intervals 3-11
and 8-16 Å. To see if the DREM method provides an advantage
relative to a conventional window method, in which each
distance-restrained system is simulated independently (no
exchanges), a no-DREM simulation was run for the 3-11 Å
range. Figure 1a compares the no-DREM and DREM results
over the time intervals 2-4 and 4-6 ns. The 0-2 ns interval
was considered as an equilibration period, since even for the
DREM simulation, the results were not converged. Clearly, the
DREM simulation provides better convergence than no-DREM
in the more difficult, larger coordinate interval. The close-in
distance result (∼3-4 Å) for the no-DREM is also not yet
converged because it looks much like the unequilibrated DREM
0-2 ns result. Thus, as has been concluded in both simpler15

and more complex protein systems,16 the replica exchanges are
accelerating the exploration of configuration space relative to
no exchanges.

The PMF for the two distance ranges is shown in Figure 1b.
The neighbor window average acceptance ratios ranged from
∼30 to 45%, with the smallest value corresponding to the 6.0-
6.5 Å systems (reflecting the peak in the PMF) for the 3-11 Å
simulation and from∼35 to 45% for the 8-16 Å simulation.
The itineration over time of (1) different configurations visiting

a fixed system (a given window equilibrium distance) and (2)
different systems migrating in and out of a particular configu-
ration showed that the procedure provided good mixing in the
extended ensemble. For each simulation, the PMFs constructed
also over the 8-16 Å interval are not converged for the 0-2
ns interval; thus, Figure 1b presents the result for the 2-6 ns
interval. Examining the 8-16 Å PMFs on 1 ns (2 ns) intervals
provides an error estimate of(0.25 ((0.125) kcal/mol. A
similar result was found for the 3-11 Å simulation, with the
error concentrated in the 8-11 Å range. The DREM simula-
tions’ accuracy may degrade at the lower and upper limits of
the restraint interval. Thus, the lack of agreement in the 8-11
Å range between the simulations may reflect this end-point issue
as well as statistical fluctuations.

DREM PMF. The closed, salt bridge structure around 4.5
Å is the most stable, well-defined state. The minimum around
4.5 Å for the end-to-end distance corresponds approximately
to the conventional geometric definition of a salt bridge. In
protein interiors, there is some contention as to whether salt
bridges are stabilizing.54 For a small peptide, the issue is
somewhat different, relying more on the difference between the
free energy of formation of one salt bridge surrounded mainly

RMSIP) [1n ∑
k)1

n

∑
i)1

n

mk(t)‚mi(t′)]1/2

(2.7)

RMSFj ) x(∫0

T
dt(r j(t) - rjj)‚(r j(t) - rjj))/T (2.8)

RMSF_t(t) ) x(∑
j)1

Nat

(r j(t) - rjj)‚(r j(t) - rjj))/Nat (2.9) Figure 1. (a) The PMF for the end-to-end distance generated in the
3-11 Å DREM and no-DREM simulations for the time intervals 2-4
and 4-6 ns. The lack of convergence of the no-DREM simulation at
larger distances is evident. (b) The PMF for the end-to-end distance
generated by the DREM simulations for the 3-11 Å and the 8-16 Å
ranges.

Studies of Met-Enkephalin J. Phys. Chem. B, Vol. 111, No. 42, 200712313



by solvent versus the charge-dipole free energy of solvation of
the two termini in more extended configurations. The PMF
shows that salt bridge conformers are strongly stabilized and
localized when defined by the chosen reaction coordinate. The
salt bridge is separated from a broad, open region in the interval
10-14 Å by a 2 kcal/mol barrier around 7 Å. This is a small
barrier on the scale of thermal energy (kBT ) 0.6 kcal/mol for
T ) 300 K). Nevertheless, without the use of a reaction
coordinate window method to sample these close-in configura-
tions, such states are rarely sampled, as noted in the Introduction.
Suggestions for why it is difficult to sample closed conformers
starting from open forms will be presented in the HREM
discussion. The broad region of flat PMF is bounded at the large
distance by rapidly rising values, indicating that the peptide is
being stretched too much. Even though there is no well-defined
open state, a kind of equilibrium constant can still be defined
by using the relative populations to the left and right of the
barrier at 7 Å. This equilibrium constant slightly favors (about
55%) the salt-bridge versus open states, indicating that in a high
dielectric solvent, both closed and open forms of zwitterionic
Met-enkephalin are well represented.

HREM Replica Exchange Diagnostics.The HREM has the
virtue of not requiring specification of a reaction coordinate or
its dimensionality. The issue is to limit the number of systems
required while still providing robust sampling. In explicit solvent
simulations, not scaling the solvent-solvent interactions should
provide a reduction in the number of systems relative to a
temperature REM that scales all the degrees of freedom. As in
all REM versions, the choice and optimization of the acceptance
probability of attempted exchanges in the HREM is a central
issue. There should be an optimal acceptance probability,
because for low exchange probability, the rate of movement
through configuration space is small, whereas for high exchange
probability, the movement through configuration space is slow.
Table 1 lists the acceptance ratios for the HREM simulation;
they are all around 0.44. Predescu and co-workers13 analyzed
the optimization of the TREM acceptance ratio for a multidi-
mensional oscillator system and found that 0.3874 is the optimal
acceptance ratio, with the efficiency falling off slowly around
this value. The uniformity of the acceptance probability values
that we find indicate that the choice of the number and spacing
(the specificλi values) are appropriate.

To examine whether all the configurations (replicas) can visit
a particular system (with a particularλi value) and whether given
configurations are visited by all the systems, we display these
time trajectories in Figure 2. From the plots, it is clear that all
the configurations (replicas) can be visited by all the systems
(a-e), and conversely, all the systems can be visited by all the
configurations (replicas) (f-j). In plot a, the points are vertically
connected, and that the plane is covered demonstrates the desired
itineration. In all the other plots, we just insert a point to indicate
occupancy. On this scale, all the plots look similar and uniform
in time, which supports the desired feature that the systems
undergo a random walk in the whole exchange range. Examined
at higher resolution (a shorter time interval), plot a, for example,

does show that replica 0 is slightly favored by lower-numbered
systems, as actually can be inferred from the white space in the
plot.

HREM Trajectory PCA. Principal component analysis is a
useful tool for the systematic investigation of the conformational
sampling of a peptide,47,48 since it can reduce the high
dimensional configuration space to an essential subspace that
contains most of the significant, large-scale motions. Only
window 1 (λ1 ) 1) corresponds to the normal force field, and
all our following analysis for HREM is based on window 1 for
this reason. The first 3 ns is considered as an equilibration
period, and the PCA is constructed for the backbone atoms.
Over the trajectory, the first mode represents around 40% of
the total backbone variance (the total MSF); the first 2 modes,
around 55%; and the first 10 modes, around 90%; showing that
the HREM simulation of met-Enkephalin does provide a division
into essential and remaining subspaces. An issue with PCA is
that the slow relaxation of the large fluctuations may prevent
the fast convergence of the (σ)ij covariance matrix,55 which
results in slow convergence of the essential space spanned by
those large fluctuation modes. So before going through any
detailed examination of the trajectories using PCA, we first test
the convergence in the essential subspace with the RMSIP50

method (eq 2.5), which can examine convergence by comparing

TABLE 1: The Acceptance Ratio for the Time Span of the
HREM Simulation a

potential index λa λb acceptance ratio

0 T 1 1.0 0.925 0.424
1 T 2 0.925 0.85 0.451
2 T 3 0.85 0.775 0.457
3 T 4 0.775 0.7 0.431

a Exchanges were attempted every 40 fs.

Figure 2. (a-e) Migration of systems into and out of a given
configuration. (f-j) Migration of configurations (replicas) into and out
of a given system (λi scale value). The figures from top to bottom
correspond to, for a-e, configurations 1-5 and, for f-j, systems 1-5.
In a, the points are vertically connected, and the coverage demonstrates
the desired itineration. Note that in view of the number of data points
that are plotted, it appears as if, at a particular time, several replicas
occupy the same window or several systems visit the same replica;
this does not happen.
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the overlap of modes constructed by using different time
intervals of the simulation. We compare RMSIPs among three
time intervals, 3-6, 6-9, and 9-12 ns, for the window 1
trajectory (λ1 ) 1) for the first mode, the sum of the first 2
modes (these 2 modes will be used for the following analysis),
and the sum of the first 10 modes. The RMSIP results, which
are a direct measure of the projection of the basis of one
subspace onto the other subspace, are listed in Table 2. All the
RMSIP values are close to their limiting values of 1.0. The mode
1 result indicates that the three PCA first mode vectors
constructed from the three time intervals are essentially the same.
That suggests there might be some reaction coordinate correlated
with the PCA first (slowest) mode and that 3 ns intervals are
sufficiently long to capture this motion. The RMSIP values for
the first 2 and 10 modes show a similar convergence. Thus, we
may be confident that the HREM simulation over 3 ns intervals
are sufficient to capture the fluctuations of the important PCA
modes of Met-enkephalin.

HREM 1D PCA PMF. That the first mode captures∼40%
of the total MSF suggests its use as a reaction coordinate, and
it should be more objective in character than that based on, for
example, an end-to-end distance, as in the DREM simulation.
The first mode displacement trajectory,p1(t), defined in eq 2.6
exhibits numerous transitions between its extreme values, which
shows that a broad range of distances is being sampled
repeatedly during the simulation time. Thus, it is legitimate to
construct a potential of mean force. The PMF, constructed by
making a histogram ofp1(t) for the 3-6 ns time interval is
displayed in Figure 3. Since we have already shown good PCA
convergence, for the following discussion, unless specified, we
will focus on the 3-6 ns interval trajectories for convenience.
(Note that in PCA, the eigenvectors are determined only up to
a sign, and consequently, there is no meaning to the direction
of increasing mode coordinate.) There is a well-defined well
around-0.5 Å, and a broad plateau region from 15 to-5 Å.
The difference between the lowest points of the two wells is

2.0 kcal/mol, and the barrier between them is 2.9 kcal/mol. The
barrier is not high, which suggests that switching between these
two states should not be difficult. Although the deep well is 2
kcal/mol lower than the broad well, it is much narrower and
suggests that there is an energy/entropy compensation tradeoff
between the broad and sharp wells. These features support the
observations of the coexistence of different conformations of
Met-enkephalin in water and of a lack of distinguishable
secondary structure.

The type of atom displacements that correspond to the first
PCA mode can be inferred by calculating the correlation
coefficient of the end-to-end distance for the first mode (obtained
from eq 2.6 with i ) 1) and for the true trajectory. The
correlation coefficient is 0.998, which suggests that mode 1 is
reporting on the end-to-end distance fluctuations. The PCA has
thus succeeded in singling out the principal collective motion
that spans the open to closed conformations.

HREM 2D PCA PMF. The second PCA mode has a
significant contribution (15%) to the overall motion and
motivates construction of the two-dimensional PMF displayed
in Figure 4. There are two wells around (-0.5 Å, 2.3 Å) and
(-0.5 Å, 7.0 Å) that correspond to the localized well in the
one-dimensional PMF plot in Figure 2. RepresentativeR-carbon
(CA) pictures of the dominant backbone conformations are also
shown. Configurations in the two wells have end-to-end
distances corresponding to salt-bridged conformers, versus the
more extended states of all the other displayed configurations.
Figure 5 shows representative CA wire frame backbone
structures with the Gly-2 and Gly-3 atoms explicit for the two
wells. The differences in the backbone structures, with the
parallel and antiparallel carbonyls, come from the differences
of the Gly-2Ψ and Gly-3Φ dihedral angles. The first row of
Figure 6 shows the Ramachandran plots for Gly2, Gly3, and
Phe4, with snapshots picked from the PCA first mode within
the range-0.6 to -0.4 Å and, in the second row, for all
snapshots for comparison purposes. Although the configurations
corresponding to the two deep wells in the 2D PMF have large
differences in their Gly-2Ψ and Gly-3Φ dihedral angles, the
main patterns of their backbones are similar, illustrating the
known56 feature that theΨ(i) andΦ(i + 1) values of residues
i and i + 1 can compensate and still lead to overall similar
structures. This is the only local mechanism in peptides (or
proteins) that can lead to a structure with essentially the same
overall conformation. The Ramachandran plots in the first row
of Figure 6 are quite similar to those generated by van der Spoel
and Berendsen24 in their study of zwitterionic Leu-enkephalin
solvated by water. Their simulations were started from a salt
bridge and an open form that rapidly closes and remains mostly
closed, so they mainly sample salt bridge conformers. They,
too, note a Gly2Ψ and Gly3Φ compensation for these salt-
bridged conformers.

The finding that the Gly2 and Gly3 are concentrated in two
distinct regions ofΨ andΦ suggests that these residues may
be participating in hydrogen bonding. For the “parallel” carbonyl
arrangement of Figure 5, there can be Gly3 N-H to Met5 Od
C hydrogen bonding/salt-bridge interactions. For the “antipar-
allel” arrangement, there can be Gly2 CdO Met5 N-H as well
as Gly2 N-H Met5 OdC hydrogen bonding/salt-bridge interac-
tions. Selected snapshots of the parallel and antiparallel
conformers do show these interaction patterns that most likely
aid in stabilizing the direct terminal salt-bridge interaction.
However, hydrogen bond analysis of the trajectories shows that
none of these additional interactions persists. The relevant
distances are constantly fluctuating and are mainly beyond the

Figure 3. The PMF corresponding to the PCA mode 1 displacement
for all λ ) 1 system snapshots.

TABLE 2: The RMSIPs (for HREM Window 1) for the
Three 3 ns Intervals (3-6, 6-9, and 9-12 Ns) Using the
PCA First Mode, First 2 Modes and First 10 Modes

3-6 vs 6-9 ns 3-6 vs 9-12 ns 6-9 vs 9-12ns

first mode 0.972 0.991 0.980
first 2 modes 0.918 0.959 0.909
first 10 modes 0.926 0.988 0.914
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distance that would permit such a conclusion. This result is based
on both the HREM simulation and the DREM simulation in
which the data for the end-to-end distance of 4.5 Å is used for
the analysis. If it were persistent, the antiparallel arrangement
would be similar to a 2-5 â turn. NMR experiments on Leu-
enkephalin in aqueous solution have not found evidence for a
â turn.57

In the remaining region of the 2D PMF plot in Figure 4, there
is a less concentrated but much larger area of relatively low
free energy than in the area around the two deep wells. The
barrier between the deep and broad areas is only around 3 kcal/
mol, and the difference between them is roughly within 2-3.5
kcal/mol, both of which are not very large on a thermal scale,
but significantly, the pathway between two areas is very narrow.
This observation suggests that although Met-enkephalin samples
both regions, one favored by energy and the other favored by
entropy, the rate of transition between them may be slower than
might be inferred from the small free energy barrier. Starting
from an extended configuration, there are many configurations
that correspond to the extended states area to first sample, and
then a restricted region in configuration space must be found
that corresponds to the small transition area in Figure 4 to enter
the salt-bridge region. This feature may explain the discrepancy
between the experimental results17-22 that Met-enkephalin or
Leu-enkephalin shows great flexibility and a lack of definite
conformations in water and the difficulty of going from the
extended to closed conformations found through conventional

MD simulations.2,7,23-31 Indeed, for the zwitterionic Met-
enkephalin simulated here, an 18 ns normal MD simulation with
the same starting configuration and conditions as for the HREM
window 1 (λ ) 1) is trapped in extended states and seldom
samples configurations corresponding to the deep wells.

HREM PMF Tyr1 Terminal Nitrogen to Met5 Terminal
Carboxylate Carbon. The zwitterionic form of Met-enkephalin
should be capable of salt bridge formation between the terminal
Tyr1 amide and Met5 carboxyl groups. As already noted, there
is a strong correlation between the end-to-end distance fluctua-
tions for the complete trajectory and that found from the first
PCA mode. In Figure 7a, we display the 1D PMF along this
end-to-end distance calculated from the trajectory of the HREM
window 1 for three time intervals, 3-6, 6-9, and 9-12 ns,
along with the total 18 ns (3-21 ns) interval. The agreement
among the three PMFs is good with the exception of the region
9-14 Å that has a discrepancy of about 1 kcal/mol. The greater
fluctuation in this region is most likely due to the extensive
configuration space sampling for these less constrained regions.
For comparison, Figure 7b displays a “pseudo PMF” generated
from the 18 ns normal MD simulation that, as we noted in the
previous section, does not adequately sample close-in conforma-
tions. There is a flat, broad well from 9 to 15 Å, similar to the
HREM or DREM simulations, but the salt bridge region is not
sampled reliably.

Comparison of the DREM PMF in Figure 1b with the
corresponding HREM-generated PMF shows that they are in
good agreement. There is some difference in the salt bridge
peak. The DREM peak is shifted down∼0.25 kcal/mol relative
to the HREM. In both, there is evidence for a slight double
well structure around 10 and 12 Å. Thus, the HREM simulation,
in which there is no explicit restraint potential, does a remark-
ably good job of mirroring the results from the DREM
simulation. In principle, a DREM simulation should provide a
more accurate PMF along a chosen reaction coordinate than a
HREM simulation with respect to the particular reaction
coordinate. Furthermore, the total time over all processors in
our simulation, including the equilibration times, was 204 ns
for the DREM and 105 ns for the HREM simulations. However,

Figure 4. The 2D PMF for the first and second PCA modes for allλ ) 1 system snapshots. Backbone CA stick plots of the configurations in the
dense places are shown with the distance between Tyr1 backbone nitrogen and Met5 carboxyl carbon shown.

Figure 5. CA wire plots for the two salt bridge conformers shown in
Figure 4, with the Gly-2 and Gly-3 backbone atoms shown explicitly
that illustrate theΨ(2) andΦ(3) dihedral angle compensation mech-
anism.
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it is not so straightforward to compare a simulation that uses
restraints with a given strength (the DREM) with a simulation
that uses only a scaled potential energy.

DREM Entropy Energy Separation. The separation of the
PMF according to∆A(r ) ) ∆E(r ) - T∆S(r ) was evaluated
using the scheme introduced in the Methodology Section. Figure
8 shows the resulting energies for the two DREM simulation
ranges for several time intervals. Note that the energies are given
for the 2-4 and 2-6 ns ranges to indicate the scale of
fluctuation in their determination. The open range data, after
the barrier at 7 Å, exhibits the greatest fluctuations, as does the
PMF, although the PMF fluctuations are much smaller for the
same time intervals. In spite of these inaccuracies in the
determination of∆E(r) and ∆S(r), some conclusions are safe
to make. Excluding the ends of the ranges, there seems to be a
minimal dependence of entropy and energy on the reaction
coordinate. In the barrier region, if there is an entropic increase,
according to Figure 8a, it is quite modest. As shown in another
fashion below, the entropy associated with the peptide is mainly
due to side-chain atom fluctuations, and these are not very
different along the reaction coordinate.

The close in data in Figure 8a (note that it is plotted starting
at 3.5 Å versus in Figure 7, which starts at 3.0 Å) would suggest
that the entropy is increasing as the end-to-end distancer
decreases. One possible source for this increase is that as the
charged ends are forced together, the effective dipole moment
of the zwitterion decreases, and this leads to a decrease in
solvent ordering. However, examination of the window data
shows that the distances∼3.0 Å are not well-sampled. This is
not a problem for∆A(r), but for the separation into its
components, it is a severe issue. An attempt was made to
examine the close in distances by running a DREM simulation

with 17 windows that span 3.0-5.0 Å with uniform separation
of 0.125 Å between neighboring windows using much stiffer
(64 kcal/mol) force constants. Now the energy is more in accord
with the free energy of Figure 8a, but the sampling is insufficient
to obtain a reliable∆A(r). Since presumably the energy increases
with decreasing distance in this region mainly due to van der
Waals repulsion of the terminal groups, the free energy should
be dominated by this energy contribution.

The 8-16 Å data in Figure 8b show that the energy fluctuates
on essentially the same scale for the 2-4 and 2-6 ns data
intervals, indicating that a substantially longer time simulation
would be required for its accurate determination in this distance
interval. Again, the problem of insufficient sampling, now
around 16.0 Å, arises. Another 17-window DREM simulation
over the interval 14.5-16.5 Å with 64 kcal/mol force constants
was run. The free energy profile over this range is essentially
identical to the results in Figure 8b. The energy evaluated over
different time intervals is quite well converged and is increasing
with increasing reaction coordinate distance in qualitative
agreement with the free energy. Thus, there is not a large entropy
decrease when Met-enkephalin is stretched.

In view of the difficulties with the above approach, another
method that focuses on the entropic contribution from the
peptide degrees of freedom for different reaction coordinate
distances is worth investigating. In addition, it is instructive to
consider the nature of the configurational space exploration of
Met-enkephalin on the basis of the time course of the peptide
atom fluctuations for different restrained distances. Of course,
separating state functions into components cannot be done
rigorously unless the components correspond to independent
sets of degrees of freedom,58 but that may be reasonable for
the peptide and solvent degrees of freedom. The RMSF_t(t)

Figure 6. Ramachandran plots for Gly2, Gly3, and Phe4 of Met-enkephalin: (a-c) snapshots that are in the PCA first mode deep well (-0.6 to
-0.4 Å); (d-f) all snapshots.
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defined in eq 2.9 is a measure of the time course of the
fluctuations from the average configuration for all the atoms
(main and side chain) of the peptide. Figure 9 displays this time
dependence; there are large fluctuations that indicate the
extensive sampling of configuration space. The 4.5 Å data is
somewhat more constrained than for 12 Å, suggesting that
conformations corresponding to the salt bridge structure fluctuate
less than those of the open form. The large fluctuations in
RMSF_t(t) demonstrate that long averaging times will be
required in obtaining quantities such as∆E(r) and ∆S(r).
Another view of the peptide fluctuations is shown in Figure
10, which displays the RMSFj’s (cf. eq 2.8), the conventional
time-averaged root-mean-square fluctuation for each atom,j.
The backbone atom RMSFj’s, indicated in the figure with
squares, are much smaller than those of the side-chain atoms.
The backbone RMSFj’s for the 4.5 Å distance are somewhat
smaller than found in typical proteins, whereas for the 12.0 Å
distance they are comparable to the values obtained from
B-factors in protein crystallography. The open form atom
fluctuations are larger than those of the salt-bridge structure for
most backbone and all side-chain atoms. It should be clear from
Figure 10 that the side-chain atoms dominate the entropy. The

additional 14.5-16.5 Å DREM simulation shows that the
backbone RMSFj values for 16.0 Å are even smaller than those
found for 4.5 Å, indicating that the peptide is stretched, whereas
the side-chain RMSFj values are comparable.

An estimate of the entropy difference of the peptide between
two restrained distances arising from differences in configura-
tional sampling may be obtained from this simulation data as
follows. If Z[t] ≡ RMSF_t(t) is assumed to be generated by a
stochastic process with a Gaussian probability density, then

with C ) 〈(δZ)2〉 the distribution’s width, andδZ ) Z - 〈Z〉.
ThatZ[t] might have a Gaussian distribution could be suggested
from its form as a sum of a large number of variables and an
appeal to the central limit theorem.59 (Actually, the distribution
is formed from those for the three Cartesian dimensions, each
of which is assumed to be Gaussian, and is therefore skewed

Figure 7. (a) The PMF for the end-to-end distance generated by the
HREM simulation for all systems withλ ) 1, averaged over several 3
ns intervals and the total averaged over 18 ns (bold line). (b) The
“pseudo PMF” for the end-to-end distance generated by an 18 ns normal
(λ ) 1) MD simulation.

Figure 8. The free energy and energy from the DREM simulations.
(a) The 3.5-11 Å range. (b) The 8-16 Å range. The time ranges for
generating the energies are given, indicating the greater fluctuation
inherent to the energy determination that is most evident for the open
form of Met-enkephalin.

p(Z) dZ ) 1

2πC1/2
exp(- 1

2
C-1(δZ)2) dZ (3.1)
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from Gaussian, but that does not affect results based on the
relative widths of distributions for two restraint distances.) The
corresponding entropy is given byS) -kB ∫ p(Z) ln p(Z) dZ,
and this leads to

The last equality, which follows from the definition ofC and
eqs 2.8 and 2.9, introduces the total mean square fluctuation
MSF ) ∑j)1

Nat RMSFj
2 and shows that it provides a measure of

the entropy difference between the two restrained distance
subensembles. Applying these considerations to the data in
Figure 10 provides a value ofT∆S) 0.45 kcal/mol. Thus, the
entropic effect from conformational sampling at the indicated
distances is quite small. The conclusion of a small entropic effect
for distances excluding the ends of the range, based on the
scheme in Appendix A, agrees with this analysis These
considerations rely on the Gaussian nature of the components
of δZ ) Z - 〈Z〉. The data in Figure 9 show that these
fluctuations are not well described as a skewed Gaussian, most
likely due to the correlations among the atom positions that
contribute toZ. Nevertheless, since the entropy for the various
restrained distances is dominated by the side-chain fluctuations
and these are not greatly affected by the restraint distance, the
peptide entropy over the sampled reaction coordinate range is
not changing significantly.

4. Conclusions

Two approaches, DREM and HREM, to improving the MD
sampling of zwitterionic Met-enkephalin in explicit solvent were
investigated. Using the DREM with the one-dimensional reac-
tion coordinate of the end-to-end distance provides a potential
of mean force that exhibits a well-localized salt-bridge state
separated by a small barrier from a broad region. An advantage
of a reaction coordinate in the DREM context is that, as evident
from eq 2.4, statistical fluctuations are minimized, since the
exchanges depend only on differences in energy that are specific
to the one restrained degree of freedom. The difficulties found
in separating the PMF into its entropic and energetic contribu-
tions in part reflect the loss of this statistical advantage. For a
reaction coordinate simulation, free energy convergence depends
on only that degree of freedom, whereas the energy convergence
will depend on all the system degrees of freedom. Therefore,
energy and entropy convergence must be much slower.

The HREM simulation succeeded in sampling configurations
that correspond to all accessible distances along the DREM
reaction coordinate without a restraint to force the system to
the desired distances. It did so quite efficiently in the sense that
only five windows were required to generate results that, as
monitored by the PCA modes, show good convergence proper-
ties in the simulation time. In addition, and essential for properly
exploring the configuration space of Met-enkephalin, the mode
1 trajectory repeatedly sampled configurations that correspond
to all the relevant end-to-end distances, and this permitted
construction of free energy quantities, such as a potential of
mean force. The PCA was effective in singling out this dominant
motion in the first mode.

The HREM simulation trajectory, analyzed with the PCA
decomposition, also revealed the presence of another significant
PMF dimension that is mainly composed of a correlated local
change of the Gly2Ψ and Gly3Φ dihedral angles. That two
very different regions of dihedral space for these residues are
stably occupied, even though the overall structure, as monitored
by the end-to-end distance, corresponds to a salt-bridge con-
former, results from this localΨ(i) andΦ(i + 1) compensation.

An advantage of the HREM is that it does not require a
commitment to a particular reaction coordinate, or a particular
dimensionality of reaction coordinate. The objectivity of the

Figure 9. All atom RMSF_t(t) defined in eq 2.9 versus time (a) for
DREM distance 4.5 Å and (b) for DREM distance 12.0 Å.

Figure 10. The RMSFj’s for each atomj for the DREM distances 4.5
and 12.0 Å, with the backbone atom RMSFj’s for 4.5 Å indicated with
squares.

∆S) S2 - S1 ) kB ln[C2/C1] ) kB ln[MSF2/MSF1]
(3.2)
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HREM in this regard is an argument in its favor relative to the
DREM in which a reaction coordinate must be specified. Of
course, the HREM has the drawback that it could fail to sample
adequately regions of configuration space that would reveal
some crucial phenomenon. The TREM is objective because all
degrees of freedom are thermally excited. However, for a system
with many degrees of freedom, the chain of replicas required
may become impractically large. The HREM can be viewed as
an attempt to excite only important degrees of freedom but that
requires a decision as to which are the important degrees of
freedom. For explicit solvent simulations, not having to excite
the solvent degrees of freedom is a great advantage since their
number is an order of magnitude larger than the number of
peptide (and protein) degrees of freedom in typical MD
simulations.

Even though Met-enkephalin is small when compared with
proteins, the dispersion of its fluctuations as indicated by Figure
9 and their scale (dominated by the side chains), as indicated
by Figure 10, are both large. These features stand in contrast
with a typical folded protein. Thus, properly sampling the Met-
enkephalin configuration space is more an issue of having to
explore a large space with small potential energy barriers than
of having to overcome a large barrier along a reaction coordinate
for some transformation, as in a folded, stable protein. The result
is a free energy profile that does not exhibit a large barrier yet
requires a great deal of simulation time and special MD methods,
such as the DREM and HREM.

Appendix A

An expression suited for obtaining the free energy decom-
position into energy and entropy contributions∆A(r ) ) ∆E(r )
- T∆S(r ) by the weighted histogram analysis method32,33 can
be developed as follows. For simplicity, we use a scalar
coordinate r for the derivation. Introduce anr-dependent
partition function,

whereΓ ) P,X denotes the phase space. Then,

where p(u)(r) ) Q(r)/Q is the unbiased probability density
corresponding toH(X,P) and Q is the canonical ensemble
partition function. The desired average energy,

can be expressed using eq A.3 as

with the definition of the unbiased joint probability density,

Equations A.3-A.5 make it clear that the decomposition of a
free energy along a reaction coordinate into energy and entropy
is related top(u)(E|r), the conditional probability of energy values
E given a value of the reaction coordinater, and therefore

requires information about all the degrees of freedom, peptide,
and solvent. This shows, in the context of a reaction coordinate
free energy method, that it is much more demanding statistically
to obtain∆E(r ) and ∆S(r ) versus∆A(r ). (If the derivation is
carried out using the configuration space and configurational
partition function instead of the phase space, the energy values
will be those coming from the total potential energy.)

WHAM combines the data from multiple windows of
different bias window potentials by writing the true (unbiased
by the window potentials) estimated probability density as a
linear combination of the window biased probability densities,
pi

(b)(r)

with

Here,ni is the number of data points in theith window, andfi
is the free energy of the system with added potentialWi(r). The
free energy values implicit in eqs A.6 and A.7 are obtained by
an iterative scheme, and their values are then used to obtain
the unbiased probability distribution. The extension of WHAM
to obtain the joint probability densityp(u)(E,r) defined in eq
A.5 is straightforward because the window potentialWi(r) is
not changed. Therefore,

and the desired conditional probability average is obtained from
eq A.4.
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